Stereoselective $ZrCl_4$ -Catalyzed Mannich-type Reaction of β -Keto Esters with Chiral Trifluoromethyl Aldimines

Luca Parise, Lucio Pellacani, Fabio Sciubba, Laura Trulli, and Stefania Fioravanti*

Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, I-00185 Roma, Italy

Supporting Information

ABSTRACT: A method for the synthesis of fluorinated β' amino β -dicarbonyl compounds using a Zr-catalyzed Mannichtype reaction has been developed, starting from *N*-protected trifluoromethyl aldimines and cyclic or acyclic β -keto esters bearing different ester residues. The in situ generated metallic complex reacted with optically pure trifluoromethyl aldimine derived from (*R*)- α -methylbenzylamine, giving a highly diastereoselective asymmetric Mannich-type addition with formation of a chiral quaternary center. The absolute configuration at the new chiral centers was assigned through two-dimensional nuclear Overhauser effect spectroscopic analysis coupled with computational studies.

INTRODUCTION

Carbon–carbon bond-forming reactions are among the most important organic reactions and are widely studied for synthetic purposes. Among these reactions, the Mannich reaction¹ is one of the most powerful methodologies. Imines can be used as preformed starting materials in addition reactions with appropriate carbon nucleophiles, giving direct access to nitrogen-functionalized compounds. In this field, α -trifluoromethyl amines were obtained by Mannich reactions of trifluoromethyl aldimines and suitable nucleophiles, such as malonates and ester enolates,² acetone,³ and aldehydes.⁴

Many catalysts⁵ have been explored in order to maximize the stereoselectivity of the reaction, but it is always important to develop new inexpensive and highly efficient catalytic methods for this reaction, possibly focusing on the synthetic procedures befitting green and sustainable chemistry criteria.⁶ Recently we reported the nontoxic, inexpensive, and stable $ZrCl_4$ as an ideal catalyst to promote addition reactions between trifluoromethyl aldimines and nitroalkanes, giving new fluorinated β -nitro amines.⁷ The reported methodology can be considered a green procedure, not only because an eco-friendly catalyst was used but also because the one-pot key step takes place under solvent-free conditions. In addition, working with optically pure fluorinated imines, the formation of a chiral metal complex key intermediate allowed us to control the stereoselective reaction outcome.⁸

Continuing our studies, herein we report a direct ZrCl_4 catalyzed Mannich-type reaction of suitable trifluoromethylaldimines with diethyl malonate and with β -keto esters. While malonate did not give relevant results, upon starting from chiral *N*-protected trifluoromethylaldimines, we were able to obtain a highly diastereoselective direct addition when the reactions were performed on β -keto esters, leading to nitrogen fluorinated dicarbonyl compounds. The usefulness of these selective catalytic Mannich-type reactions was enhanced by a diastereoselective decarboxylation reaction of the newly obtained β -keto esters.⁹ In fact, it is well-known that the direct addition reaction of enolizable ketones to imines suffers from low yields and/or low selectivity. Furthermore, the use of silyl enol ethers as ketone surrogates may result in higher yields, but diastereoselectivities remain low.¹⁰

RESULTS AND DISCUSSION

A first reaction was performed in equimolar ratio between trifluoromethyl aldimines 1a,b and diethyl malonate 2. As reported in Table 1, while no reaction was observed starting from either 1a or 1b in the presence of AlCl₃ (entries 4–6 and 11–13), the use of ZrCl₄ (entries 7 and 14) as catalyst gave 3a,b in higher yields and shorter times than when the reactions were performed with CuCl₂ (entries 1–3 and 8–10).

Thus, once the reaction conditions were optimized, a direct diastereoselective ZrCl_4 -catalyzed Mannich-type reaction was attempted starting from optically pure trifluoromethyl aldimine **1c**,¹¹ but no induction was observed (Scheme 1).

Therefore, we turned our attention toward the reactivity of β keto esters. To optimize the reaction conditions for direct catalytic Mannich-type additions of β -keto esters to trifluoromethyl aldimines, imine **1a** and ethyl acetoacetate (**6**) in equimolar ratio were considered as opportune starting materials and reacted under different catalytic conditions (Table 2).

Considering that the reaction performed without catalyst did not give the expected product (entry 1), different catalysts were chosen to test the imine reactivity, from the most common

Received: June 17, 2015 **Published:** July 23, 2015

Table 1. Reaction Condition Optimization of Diethyl Malonate 2

//

Pg: a = Bn; b = MeOξ(PMP)							
entry	catalyst	mole %	time (min)	temp (°C)	yield ^a (%)		
(a) Protecting Group = Benzyl							
1	$CuCl_2$	25	5	25	50		
2	$CuCl_2$	25	30	0	35		
3	$CuCl_2$	25	60	-20	40		
4	AlCl ₃	50	30	25			
5	AlCl ₃	25	30	25			
6	AlCl ₃	10	30	25			
7	$ZrCl_4$	10	10	25	75		
(b) Protecting Group = p -Methoxyphenyl							
8	$CuCl_2$	50	30	25			
9	$CuCl_2$	25	30	25			
10	$CuCl_2$	10	30	25			
11	AlCl ₃	50	30	25			
12	AlCl ₃	25	30	25			
13	AlCl ₃	10	30	25			
14	$ZrCl_4$	10	30	25	79		

^aAfter flash chromatography on silica gel (eluent hexane/ethyl acetate = 8:2).

Scheme 1. ZrCl₄-Catalyzed Mannich-type Reaction with **Optically Pure 1c**

organic or inorganic bases (entries 2 and 3) or cinchonidine, Lproline, or its derivative (entries 4–11). As reported in Table 2, only when using L-proline (entries 8 and 9) or (S)- $\alpha_{,}\alpha_{-}$ diphenylprolinol (entry 11) in the presence of a suitable solvent it was possible to observe the formation of the expected Mannich adducts, but only in trace amounts (<5%) by NMR.

Then we considered as catalyst $CuCl_2$ (entries 12-14), widely used to promote different addition reactions,¹¹ AlCl₃ (entries 15-17), and ZrCl₄,^{7,8,12} (entries 18-22) as easily disposable, eco-friendly, and efficient Lewis acid.¹³ Finally, the reactions performed under solvent-free conditions gave the expected product, the best conditions being those reported in entry 18. In all cases, 7/7'a were obtained in an equimolar ratio, even upon changing the reaction temperature (entries 19 and 20).

Under the best conditions, the ZrCl₄-catalyzed Mannich-type reactions were performed starting from different β -keto esters and using N-protected trifluoromethyl aldimines 1a,b as opportune substrates. The results are reported in Table 3.

In all cases the reactions occurred with success in a short time, affording the Mannich adducts in good yields and very high stereoselectivity, especially when six-membered cyclic β - Table 2. Reaction Condition Optimization of β -Keto Ester 6^{*a*}

	Ia	Ū	<i>anti/syn=</i> 5:5			5:5
entry	catalyst	molar (%)	solvent	time	temp (°C)	yield (%) ^a
1	-	-	-	2 d	25	-
2	Et ₃ N	100	THF	4 h	25	-
3	KF	100	THF	4 h	25	-
4	cinchonidine	10	$\mathrm{CH}_2\mathrm{Cl}_2$	1 d	0	-
5		10	-	24 h	25	-
6		30	-	2 h	25	_
7	L-proline	10	DMSO	24 h	25	_
8		10	NMP	3 h	25	<5 ^c
9		10	THF	2 d	25	<5°
10	Ph Ph	10	-	1 d	25	_
11	N OH b	10	NMP	3 d	25	<5 ^c
12		25	-	5 min	25	50
13	CuCl ₂	25	-	30 min	0	35
14		25	_	1 h	-20	40
15		25	-	15 min	25	40
16	AlCl ₃	25	-	25 min	0	36
17		25	-	45 min	-20	30
18		10	-	10 min	25	75
19		10	_	1 h	0	35
20	ZrCl ₄	10	_	3 h	-20	30
21		10	_	6 h	-70	_
22		25	_	6 h	-70	_

^aAfter flash chromatography on silica gel (eluent hexane/ethyl acetate ^b(S)- α , α -Diphenylprolinol. ^cConversion determined by ¹⁹F = 8:2). NMR.

keto esters were used (entries 3 and 6). A catalytic pathway can be proposed (Figure 1).

Zr(IV) coordinates both β -dicarbonyl oxygen atoms (I), so determining an increase of acidity of methylene protons, which can be then deprotonated by trifluoromethyl aldimine. Finally, an intermolecular nucleophilic attack to form II brings formation of the expected fluorinated β' -amino β -dicarbonyl compounds and restores the catalytic cycle.

Then, considering the hypothesized reaction outcome, we thought to perform the Mannich-type reaction starting from the optically pure trifluoromethyl aldimine 1c, hoping that the presence of a chiral resident center on the electrophilic imine could lead to a diastereoselective addition reaction without the need for chiral ligand addition (Table 4).

Table 3. Solvent-Free $ZrCl_4$ -Catalyzed Mannich-type Reaction of Different β -Keto Esters

Pg、 H´		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	solvent-fre ZrCl ₄ (10 mol ⁴	$\xrightarrow{Pg_NH}$ NH NH NH R'	O ↓ CO₂R"
	la,b 8: R, F 9: R-F 10: R-F	R' = CH _{3,} R'' = R' = -(CH ₂) ₃ -, F R' = -(CH ₂) ₄ -, F	C_2H_5 R" = C_2H_5 R" = C_2H_5	11/ [,] 12/ [,] 1;	11'a,b 12'a,b 3a,b
entry	β -keto ester	product	time (min)	major/minor ^a	yield ^b (%)
		(a) Protect	ing Group = F	Benzyl	
1	8	11a/11'a	30	7:3 ^c	65
2	9	12a/12'a	10	7:3 ^c	75
3	10	13a	10	9:1	78
	(b)	Protecting G	Group = p -Met	hoxyphenyl	
4	8	11b/11′b	30	7:3 ^c	68
5	9	12b/12'b	10	7:3 ^c	73
6	10	13b	10	9.9:0.1	85

^{*a*}Determined by ¹⁹F NMR spectra performed on the crude mixtures. ^{*b*}After flash chromatography on silica gel. ^{*c*}The ratio did not change upon working at lower temperatures.

Figure 1. Proposed pathway for ZrCl₄-catalyzed Mannich-type addition of 6.

As reported in Table 4, the stereoselective control failed in the absence of a steric hindrance on the methylene active group of β -keto compounds (entries 1 and 5). Moreover, under our reported reaction conditions, changing the ester residue did not influence the reaction stereochemistry, unlike in the literature.¹⁵ In fact, in *tert*-butyl ester 14 (entry 5), dr and major/minor ratio did not change compared with methyl ester 6 (entry 1). Instead, very high dr values and major/minor ratios were obtained starting from methyl-substituted or cyclic methylene active compounds 8–10 and 15 (entries 2–4 and 6), in all cases forming only one of the four possible diastereomers, a quaternary chiral center being selectively formed.

To determine the absolute configuration of the new chiral centers, as well as the *anti* or *syn* configuration of the major or minor obtained diastereomers, diastereoselective decarboxylation of **23** was performed (Scheme 2), following the procedure reported in the literature.¹⁵

Considering that equally high selectivity has been retained during the decarboxylation step¹⁵ and following the already reported methodology,⁵ two-dimensional nuclear Overhauser

Ph					₽h			
	+ I CF3		solvent-fr ZrCl ₄ (10 mol	ee %), rt		D R CO₂R"		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
entry	β -keto ester	time (min)	product	dr ^a	major/ minor ^a	yield ^b (%)		
1	6	30	major 16,17 ; minor 16′,17 ′	5:5	5:5	72		
2	8	10	18	≥9.9	9.9:0.1	68		
3	9	10	19	≥9.9	9.9:0.1	78		
4	10	20	20	≥9.9	9.9:0.1	78		
5	14	30	major 21,22; minor 21',22'	5:5	5:5	65		
6	15 ¹⁴	30	23	≥9.9	9.9:0.1	64		
a_		10						

Table 4. ZrCl₄-Catalyzed Mannich-Type Reaction with

Optically Pure 1c

^{*a*}Determined by ¹⁹F NMR spectra performed on the crude mixtures. ^{*b*}After flash chromatography on silica gel.

Scheme 2. Decarboxylation Reaction of 23

effect spectroscopic analysis (2D NOESY) on 24 coupled with computational studies (see Supporting Information) permitted us to assign the (R,R,R) absolute configuration to the obtained syn isomer 24. As a consequence, the (R,R,S) absolute configuration can be assigned to the starting β' -amino β -keto ester *anti* isomer 23. Thanks to the ability of Zr to coordinate both oxygen atoms, thus forming an octahedral-like intermediate in which the enolate is constrained in a planar geometric disposition, the nucleophilic attack takes place only on the sterically less hindered prochiral Re face of optically pure aldimine 1c (Figure 2).

Figure 2. Model for preferred face-selective addition reaction.

Considering the stereochemical results reported in Table 3, steric hindrance on the *E* double bond of zirconium complex **III** was required to obtain complete stereoselective control (Scheme 3). In fact, upon starting from unsubstituted acyclic β -keto esters **6** or **15**, low dr values and no *syn/anti* selectivity were observed.

To confirm the relevance of Zr on the highly stereoselective reaction outcome, a Mannich-type addition reaction was performed between trifluoromethyl aldimine 1c and β -keto ester 8 by using AlCl₃ as catalyst (Scheme 4).

Scheme 3. Stereoselective Synthesis of β' -Amino β -Keto Ester 18

Scheme 4. AlCl₃-Catalyzed Mannich-Type Reaction

In this case, all the four possible diastereomers were obtained in equimolar ratios, with the Al coordinating only the carbonyl oxygen (IV) and giving, as a consequence, the acyclic anionic intermediate V (Figure 3).

Figure 3. Proposed pathway for $AlCl_3$ -catalyzed Mannich-type addition of 8.

Finally, the solvent effect on reaction diastereoselectivity was investigated. Thus, the $ZrCl_4$ -catalyzed Mannich-type reaction of **8** with chiral aldimine **1c** was performed by using some different organic solvents: dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), CHCl₃, and PhCH₃.

In DMSO, the reaction did not take place, probably because $ZrCl_4$ is coordinated to the solvent and no longer available to promote the catalytic cycle. In fact, the use of less polar THF or CHCl₃ gave, as expected, only the diastereomerically pure **18**, although in yields lower than those obtained in reactions performed under solvent-free conditions (32% and 43%, respectively). Finally, performing the reaction in almost nonpolar toluene, the Mannich addition takes place in satisfactory yields (68%), but surprisingly, all four possible diastereomers, *anti***18**,**25** and *syn***18**',**25**', are formed in equimolar ratios.

In conclusion, a new direct diastereoselective Mannich² reaction of β -keto esters with *N*-protected trifluoromethyl aldimines has been developed. The ester residue did not affect the reaction outcome: in fact, no difference in reactivity was found by changing the ester moiety. On the contrary, the presence of an alkyl substituent on the methylene active group of β -keto esters and the use of Zr as coordinating metal to control the reaction stereoselectivity were very important.

Furthermore, the use of common and inexpensive chiral (R)- α -methylbenzylamine,¹⁶ easily removable by hydrogenolysis after Mannich-type addition, to synthesize the optically pure aldimine permits us to obtain a complete stereoselective induction without the need for other added organocatalysts. Thus, working under solvent-free conditions and even at room temperature, only *anti* isomer Mannich adducts, bearing a quaternary chiral center, were obtained as pure diastereomers.

EXPERIMENTAL SECTION

General. IR spectra were recorded on a Fourier transform infrared (FT/IR) spectrophotometer in CHCl_3 as solvent and are reported in reciprocal centimeters. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded by a 300 or a 400 MHz instrument and are reported in δ units. CDCl₃ was used as solvent and CHCl₃ (δ = 7.26 ppm, for ¹H NMR), CDCl₃ $(\delta = 77.0 \text{ ppm, for } {}^{13}\text{C NMR})$ and C_6F_6 ($\delta = -164.9 \text{ ppm, for } {}^{19}\text{F}$ NMR) were used as internal standards. The NOESY experiments were performed by a 400 MHz instrument with CDCl₃ as solvent and CHCl₂ as internal standard; these were used to assist in structure elucidation.¹⁷ Electrospray ionization mass spectrometry (ESI MS) analyses were performed on a quadrupole-time-of-flight (Q-TOF) mass spectrometer equipped with an ESI source and a syringe pump. The experiments were conducted in positive-ion mode. Optical rotation was determined at 25 °C at a wavelength of 589 nm, with a quartz cell of 1 cm length. Imines 1a-c were prepared by reaction of trifluoroacetaldehyde ethyl hemiacetal and an opportune primary amine, following the reported procedure.¹⁸ Diethyl malonate (2), β keto esters 6, 8-10, and 14, ZrCl₄, and trimethylsilyl trifluoromethanesulfonate (TMSOTf) are commercially available and were used as received. β -Keto ester 15 was prepared following the reported procedure.

ZrCl₄-Catalyzed Mannich-type Reactions. General Procedure. To a mixture of trifluoromethyl aldimines 1a-c (1 mmol) and diethyl malonate (2) or β -keto esters 6, 8–10, and 14 (1 mmol) was added ZrCl₄ (10 mol %). Reactions were performed under solvent-free conditions and stirred at room temperature for 10–30 min. After H₂O addition, the crude mixtures were extracted with Et₂O. Collected organic layers were dried on anhydrous Na₂SO₄, solvent was evaporated in vacuo, and residues were purified by flash chromatography on silica gel (eluent hexane/ethyl acetate = 8:2).

Diethyl 2-[1-(Benzylamino)-2,2,2-trifluoroethyl]malonate (**3a**). Yellow oil (299 mg, 80%). IR 1748, 1760 cm^{-1.} ¹H NMR (CDCl₃) δ 1.22–1.33 (m, 6H), 2.40 (br s, 1H), 3.71 (d, J = 6.0 Hz, 1H), 3.86–4.07 (m, 3H), 4.15–4.29 (m, 4H), 7.21–7.31 (m, 5H). ¹⁹F NMR (CDCl₃) δ –72.23 (d, J = 7.2 Hz). ¹³C NMR (CDCl₃) δ 13.8, 13.9, 52.0, 52.3, 58.7 (q, J = 28.4 Hz), 61.8, 62.1, 125.8 (q, J = 286.3 Hz), 127.2, 128.1 (2C), 128.2 (2C), 139.2, 166.5, 166.6. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₆H₂₁F₃NO₄ 348.1423, found 348.1424.

Diethyl 2-{2,2,2-Trifluoro-1-[(4-methoxyphenyl)amino]ethyl]malonate (**3b**). Brown oil (287 mg, 79%). IR 1750, 1758 cm⁻¹. ¹H NMR (CDCl₃) δ 1.15 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 3.74 (s, 3H), 3.82 (d, *J* = 3.5 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.61–4.76 (m, 2H), 6.69–6.79 (m, 4H). ¹⁹F NMR (CDCl₃) δ –74.10 (d, *J* = 7.2 Hz). ¹³C NMR (CDCl₃) δ 13.8, 13.9, 50.7, 55.6, 57.3 (q, *J* = 30.2 Hz), 62.1, 62.5, 114.7 (2C), 115.7 (2C), 125.1 (q, *J* = 284.7 Hz), 139.8, 153.3, 166.0, 167.0. HR-MS (ESI Q-

The Journal of Organic Chemistry

TOF) (m/z) [M + H]⁺ calcd for C₁₆H₂₁F₃NO₅ 364.1372, found 364.1375.

Diethyl 2-(2,2,2-Trifluoro-1-{[(R)-1-phenylethyl]amino}ethyl)malonate (**4,5c**). Colorless (263 mg, 73%). IR 1743, 1751 cm⁻¹. ¹H NMR (CDCl₃) δ 1.28–1.35 (m, 18H), 2.73 (br s, 2H), 3.64 (d, *J* = 5.1 Hz, 1H), 3.71 (d, *J* = 5.1 Hz, 1H), 3.93–4.31 (m, 12H), 7.24–7.34 (m, 10H). ¹⁹F NMR (CDCl₃) δ –73.39 (d, *J* = 7.4 Hz), -70.66 (d, *J* = 7.0 Hz). ¹³C NMR (CDCl₃) δ 13.8, 13.9 (2C), 14.0, 23.6, 25.1, 51.3, 51.7, 55.4, 55.7, 56.4 (q, *J* = 28.0 Hz), 56.5 (q, *J* = 28.8 Hz), 61.7, 61.8, 62.0, 62.2, 125.5 (q, *J* = 284.3 Hz), 126.0 (q, *J* = 288.4 Hz), 126.8 (2C), 127.1 (2C), 127.2, 127.3, 128.3 (2C), 128.4 (2C), 143.7, 144.7, 166.4, 166.8 (2C), 166.9. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₇H₂₃F₃NO₄ 362.1579, found 362.1582.

Methyl 2-Acetyl-3-(benzylamino)-4,4,4-trifluorobutanoate (**7,7'a**). Yellow oil (227 mg, 75%). IR 1740, 1715 cm⁻¹. ¹H NMR (CDCl₃) δ 1.84 (br s, 1H), 2.01 (br s, 1H), 2.20 (s, 3H), 2.24 (s, 3H), 3.73 (s, 3H), 3.75 (s, 3H), 3.78 (d, *J* = 2.1 Hz, 1H), 3.79 (d, *J* = 3.7 Hz, 1H), 3.82–3.86 (m, 2H), 3.92–4.05 (m, 4H), 7.23–7.34 (m, 10H). ¹⁹F NMR (CDCl₃) δ –72.03 (d, *J* = 7.2 Hz), -71.91 (d, *J* = 7.1 Hz). ¹³C NMR (CDCl₃) δ 29.1, 29.8, 52.3 (2C), 52.7, 52.9, 58.0 (q, *J* = 28.6 Hz), 58.6, 58.9 (q, *J* = 28.1 Hz), 59.4, 127.3, 127.4, 127.5 (q, *J* = 282.5 Hz, 2C), 128.3 (4C), 128.4 (4C), 138.8, 139.1, 167.2, 167.5, 198.8, 199.8. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₄H₁₇F₃NO₃ 304.1161, found 304.1165.

Ethyl 2-Acetyl-3-(benzylamino)-4,4,4-trifluoro-2-methylbutanoate (11,11'a). Red oil (215 mg, 65%). IR 1743, 1720 cm⁻¹. ¹H NMR (CDCl₃) δ 1.21–1.28 (m, 6H), 1.40 (s, 3H, minor syn isomer), 1.48 (s, 3H, major anti isomer), 1.83 (br s, 2H), 2.18 (s, 6H), 3.79– 3.85 (m, 2H), 4.07–4.30 (m, 7H), 4.38 (q, J = 7.3 Hz, 1H), 7.26–7.34 (m, 10H). ¹⁹F NMR (CDCl₃) δ –65.60 (d, J = 7.6 Hz, minor syn isomer), -65.39 (d, J = 7.0 Hz, major anti isomer). ¹³C NMR (CDCl₃) δ 13.4, 13.8, 13.9, 15.5, 25.8, 26.3, 52.7, 53.1, 61.9, 62.1, 62.2 (q, J = 26.6 Hz), 62.3, 62.6 (q, J = 26.7 Hz), 63.2, 126.0 (q, J = 288.6 Hz), 126.2 (q, J = 288.2 Hz), 127.3, 127.5, 128.0 (2C), 128.2 (2C), 128.3 (2C), 128.4 (2C), 138.8, 139.3, 169.4, 169.5, 200.7, 202.2. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₆H₂₁F₃NO₃ 332.1474, found 332.1470.

Ethyl 2-Acetyl-4,4,4-trifluoro-3-[(4-methoxyphenyl)amino]-2methylbutanoate (11,11'b). Red oil (236 mg, 68%). IR 1750, 1729 cm^{-1.} ¹H NMR (CDCl₃) δ 1.16 (t, *J* = 7.1 Hz, 3H, major anti isomer), 1.25 (t, *J* = 7.0 Hz, 3H, minor syn isomer), 1.54 (s, 3H, syn isomer), 1.56 (s, 3H, major anti isomer), 2.19 (s, 6H), 3.73 (s, 6H), 4.02–4.27 (m, 6H), 4.76–4.87 (m, 1H, major anti isomer), 4.92–5.03 (m, 1H, minor syn isomer), 6.67–6.78 (m, 8H). ¹⁹F NMR (CDCl₃) δ –67.71 (d, *J* = 7.4 Hz, minor syn isomer), -67.63 (d, *J* = 8.0 Hz, major anti isomer). ¹³C NMR (CDCl₃) δ 13.7, 13.8, 15.1, 16.4, 26.2, 26.5, 55.5 (2C), 58.7 (q, *J* = 28.4 Hz), 59.8 (q, *J* = 28.2 Hz), 61.3 (2C), 62.0, 62.3, 114.7 (2C), 114.8 (2C), 115.2 (2C), 115.5 (2C), 125.3 (q, *J* = 286.9 Hz), 125.4 (q, *J* = 286.5 Hz), 139.3, 139.6, 153.2, 153.4, 169.5, 169.6, 201.8, 202.0. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₆H₂₁F₃NO₄ 348.1423, found 348.1425.

Ethyl 1-[1-(Benzylamino)-2,2,2-trifluoroethyl]-2-oxocyclopentanecarboxylate (**12**,**12**′*a*). Red oil (257 mg, 75%). IR 1758, 1725 cm^{-1.} ¹H NMR (CDCl₃) δ 1.21–1.31 (m, 6H), 1.59 (br s, 2H), 1.98– 2.05 (m, 6H), 2.17–2.76 (m, 6H), 3.78–4.09 (m, 4H), 4.12–4.41 (m, 6H), 7.24–7.34 (m, 10H). ¹⁹F NMR (CDCl₃) δ –65.25 (d, J = 8.4 Hz, minor syn isomer), -65.50 (d, J = 8.4 Hz, major anti isomer). ¹³C NMR (CDCl₃) δ 13.8, 13.9, 19.5, 20.2, 27.0, 27.1, 37.2, 38.5, 52.7, 54.2, 62.0, 62.2 (q, J = 26.5 Hz, 2C), 62.2, 63.1, 64.5, 125.9 (q, J = 287.6 Hz, 2C), 127.3, 127.4, 128.0 (4C), 128.3 (4C), 139.0, 139.3, 166.7, 166.8, 210.1, 210.4. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₇H₂₁F₃NO₃ 344.1474, found 344.1471.

Ethyl 2-Oxo-1-{2,2,2-trifluoro-1-[(4-methoxyphenyl)amino]ethyl}cyclopentanecarboxylate (12,12'b). Brown oil (262 mg, 73%). IR 1762, 1759 cm^{-1.} ¹H NMR (CDCl₃) δ 1.04 (t, J = 7.1Hz, 3H, major anti isomer), 1.23 (t, J = 7.1 Hz, 3H, minor syn isomer), 1.93–2.47 (m, 10H), 2.54–2.83 (m, 2H), 3.54 (br s, 1H), 3.74 (s, 6H), 3.85 (br s, 1H), 3.90–4.04 (m, 2H), 4.10–4.25 (m, 2H), 4.82– 4.96 (m, 2H), 6.69–6.78 (m, 8H). ¹⁹F NMR (CDCl₃) δ –69.89 (d, J = 7.2 Hz, minor syn isomer), -68.37 (d, J = 7.0 Hz, major anti isomer). ¹³C NMR (CDCl₃) δ 13.7, 13.9, 19.5, 20.0, 27.2, 28.2, 37.1, 38.3, 55.6 (2C), 59.7 (q, *J* = 28.1 Hz), 61.0 (q, *J* = 27.7 Hz), 62.0, 62.3, 62.5, 63.9, 114.7 (4C), 115.7 (2C), 116.4 (2C), 125.1 (q, *J* = 285.9 Hz), 125.6 (q, *J* = 286.6 Hz), 139.5, 139.9, 153.5, 153.8, 166.4, 167.2, 209.4, 210.7. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₇H₂₁F₃NO₄ 360.1423, found 360.1427.

Ethyl 1-[1-(Benzylamino)-2,2,2-trifluoroethyl]-2-oxocyclohexanecarboxylate (13a). White oil (278 mg, 78%). IR 1743, 1729 cm⁻¹. ¹H NMR (CDCl₃) δ 1.21 (t, *J* = 7.1 Hz, 3H), 1.64–1.94 (m, 6H), 2.36– 2.52 (m, 3H), 3.73–4.10 (m, 2H), 4.13–4.28 (m, 3H), 7.22–7.33 (m, SH). ¹⁹F NMR (CDCl₃) δ –63.79 (d, *J* = 7.8 Hz). ¹³C NMR (CDCl₃) δ 13.8, 21.9, 25.9, 30.9, 40.7, 52.8, 61.6 (q, *J* = 27.4 Hz), 61.9, 64.3, 126.0 (q, *J* = 288.7 Hz), 127.3, 128.1 (2C), 128.3 (2C), 139.1, 168.5, 203.8. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₈H₂₃F₃NO₃ 358.1630, found 358.1635.

Ethyl 2-Oxo-1-{2,2,2-trifluoro-1-[(4-methoxyphenyl)amino]ethyl}cyclohexanecarboxylate (**13b**). White oil (317 mg, 85%). IR 1745, 1728 cm^{-1.} ¹H NMR (CDCl₃) δ 1.11 (t, *J* = 7.1 Hz, 3H), 1.63– 2.03 (m, 6H), 2.42–2.54 (m, 3H), 3.73 (s, 3H), 3.97 (q, *J* = 7.2 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 1H), 4.83–4.91 (m, 1H), 6.66–6.76 (m, 4H). ¹⁹F NMR (CDCl₃) δ –67.03 (d, *J* = 7.5 Hz). ¹³C NMR (CDCl₃) δ 13.7, 22.0, 26.2, 31.4, 40.8, 55.7, 58.9 (q, *J* = 29.1 Hz), 62.2, 63.8, 114.8 (2C), 115.3 (2C), 125.1 (q, *J* = 286.2 Hz), 139.8, 153.3, 168.3, 203.9. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₈H₂₃F₃NO₄ 374.1579, found 374.1571.

Methyl 2-Acetyl-4,4,4-trifluoro-3-{[(R)-1-phenylethyl]amino}butanoate (anti-16,17/syn-16',17'). Yellow oil (228 mg, 72%). IR 1739, 1725 cm⁻¹. ¹H NMR (CDCl₃) δ 1.29–1.34 (m, 12H), 1.67 (br s, 1H), 2.05 (s, 3H), 2.12 (s, 3H), 2.21 (br s, 1H), 2.29 (s, 3H), 2.32 (s, 3H), 2.50 (br s, 1H), 3.65-3.81 (m, 20H), 3.98-4.09 (m, 5H), 7.23–7.36 (m, 20H). ¹⁹F NMR (CDCl₃) δ –73.16 (d, J = 7.6 Hz), -72.63 (d, J = 6.9 Hz), -70.52 (d, J = 6.9 Hz), -70.07 (d, J = 7.9 Hz). ¹³C NMR (CDCl₃) δ 22.7, 23.1, 24.7, 24.8, 28.7, 29.3, 29.9, 30.9, 52.5, 52.7 (2C), 52.9, 55.3, 55.4, 55.6 (q, J = 26.3 Hz), 55.7 (2C), 55.7 (q, J = 27.8 Hz), 56.6 (q, J = 28.3 Hz), 56.7 (q, J = 27.7 Hz), 57.6, 58.2, 59.0, 59.1, 125.6 (q, J = 277.4 Hz), 126.0 (q, J = 288.1 Hz), 126.6 (2C), 126.7 (2C), 127.1 (q, J = 284.4 Hz), 127.2 (q, J = 280.4 Hz), 127.3 (2C), 127.4 (4C), 127.6 (2C), 128.3 (2C), 128.4 (4C), 128.5 (2C), 143.1, 143.2, 144.7, 144.8, 167.3, 167.5, 167.7, 167.8, 199.0, 199.1, 200.4 (2C). HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₅H₁₉F₃NO₃ 318.1317, found 318.1312.

Ethyl (25, 3*R*)-2-Acetyl-4, 4, 4-trifluoro-2-methyl-3-{[(*R*)-1-phenylethyl]amino}butanoate (**18**). Light yellow oil (234 mg, 68%). [α]_D = +86.0 (c = 1 g/100 mL, CHCl₃). IR 1742, 1726 cm^{-1.} ¹H NMR (CDCl₃) δ 1.28–1.31 (m, 6H), 1.46 (s, 3H), 1.97 (br s, 1H), 2.22 (s, 3H), 4.04 (q, J = 6.2 Hz, 1H), 4.18 (q, J = 7.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 1H), 4.36 (q, J = 8.1 Hz, 1H), 7.22–7.32 (m, 5H). ¹⁹F NMR (CDCl₃) δ –64.99 (d, J = 8.5 Hz). ¹³C NMR (CDCl₃) δ 13.9, 15.3, 21.6, 26.6, 55.5, 59.1 (q, J = 26.7 Hz), 62.1, 63.2, 126.0 (q, J = 288.4 Hz), 126.5 (2C), 127.4, 128.5 (2C), 145.5, 169.4, 202.2. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₇H₂₃F₃NO₃ 346.1630, found 346.1633.

Ethyl (15)-2-Oxo-1-[(1R)-2,2,2-trifluoro-1-{[(R)-1-phenylethyl]amino}ethyl]cyclopentanecarboxylate (19). Light yellow oil (278 mg, 78%). [α]_D = +54.0 (c = 1 g/100 mL, CHCl₃). IR 1731, 1718 cm^{-1.} ¹H NMR (CDCl₃) δ 1.23–1.28 (m, 6H), 1.60 (br s, 1H), 1.85–1.96 (m, 3H), 2.12–2.23 (m, 1H), 2.19–2.28 (m, 1H), 2.59–2.63 (m, 1H), 3.96 (q, J = 6.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 1H), 4.21 (q, J = 7.1 Hz, 1H), 4.29 (q, J = 7.3 Hz, 1H), 7.16–7.29 (m, 5H). ¹⁹F NMR (CDCl₃) δ –64.99 (d, J = 8.5 Hz). ¹³C NMR (CDCl₃) δ 14.0, 19.6, 21.6, 27.2, 37.2, 55.3, 59.2 (q, J = 26.3 Hz), 62.3, 64.5, 126.5 (2C), 126.9 (q, J = 288.4 Hz), 127.5, 128.6 (2C), 146.4, 166.8, 210.0 HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₈H₂₃F₃NO₃ 358.1630, found 358.1636.

Ethyl (15)-2-Oxo-1-[(1R)-2,2,2-trifluoro-1-{[(R)-1-phenylethyl]amino}ethyl]cyclohexanecarboxylate (**20**). Colorless oil (289 mg, 78%). [α]_D = +79.0 (c = 1 g/100 mL, CHCl₃). IR 1740, 1715 cm⁻¹. ¹H NMR (CDCl₃) δ 1.26–1.33 (m, 6H), 1.57–1.67 (m, 3H), 1.84– 1.99 (m, 4H), 2.37–2.41 (m, 1H), 2.52–2.63 (m, 1H), 4.02 (q, *J* = 7.1 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 1H), 4.31 (q, *J*

The Journal of Organic Chemistry

= 7.2 Hz, 1H), 7.23–7.31 (m, 5H). ¹⁹F NMR (CDCl₃) δ –64.99 (d, J = 8.5 Hz). ¹³C NMR (CDCl₃) δ 13.9, 21.5, 22.1, 25.7, 30.3, 40.9, 55.2, 58.2 (q, J = 26.6 Hz), 62.0, 64.3, 126.2 (q, J = 287.8 Hz), 126.5 (2C), 127.4, 128.5 (2C), 145.5, 168.4, 203.7. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₉H₂₅F₃NO₃ 372.1787, found 372.1785.

tert-Butyl 2-Acetyl-4,4,4-trifluoro-3-{[(R)-1-phenylethyl]amino}butanoate (anti-**21,22**/syn-**21**',**22**'). Colorless oil (233 mg, 65%). IR 1737, 1712 cm⁻¹. ¹H NMR (CDCl₃) δ 1.48–1.58 (m, 52H), 2.04 (s, 3H), 2.07 (s, 3H), 2.29–2.30 (m, 6H), 3.50–3.73 (m, 6H), 3.99– 4.08 (m, 6H), 7.26–7.36 (m, 20H). ¹⁹F NMR (CDCl₃) δ –70.08 (d, J = 8.6 Hz), -70.50 (d, J = 7.7 Hz), -72.21 (d, J = 8.5 Hz), -72.83 (d, J = 7.5 Hz). ¹³C NMR (CDCl₃) δ 22.6, 23.3, 24.9, 25.5, 27.6 (2C), 27.8 (12C), 28.3 (2C), 54.6, 55.3, 55.4, 55.6, 56.1 (q, J = 28.0 Hz), 56.3 (q, J = 27.5 Hz), 56.4 (q, J = 30.0 Hz), 56.5 (q, J = 28.0 Hz), 59.2, 59.7, 59.9, 60.5, 82.8, 82.9, 83.0, 83.1, 125.7 (q, J = 278.8 Hz), 125.8 (q, J = 279.8 Hz), 125.9 (q, J = 285.5 Hz), 126.1 (q, J = 288.5 Hz), 126.7 (2C), 126.9 (2C), 127.0 (2C), 127.3 (2C), 127.4, 127.5, 127.6 (2C), 128.4 (4C), 128.5 (2C), 128.7 (2C), 143.0, 143.4, 143.8, 144.8, 165.9, 166.1, 166.7, 166.8, 199.7, 199.8, 200.5, 200.8. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₈H₂₅F₃NO₃ 360.1787, found 360.1789.

tert-Butyl (2S,3R)-2-Acetyl- \dot{q} , \dot{q} ,4-trifluoro-2-methyl-3-{[(R)-1-phenylethyl]amino}butanoate (23). Yellow oil (238 mg, 64%). [α]_D = +123.0 (c = 1 g/100 mL, CHCl₃). IR 1752, 1719 cm⁻¹. ¹H NMR (CDCl₃) δ 1.25 (d, J = 6.4 Hz, 3H) 1.34 (s, 3H), 1.40 (s, 9H), 1.95 (br s, 1H), 2.15 (s, 3H), 3.98 (q, J = 6.4 Hz, 1H), 4.15–4.24 (m, 1H), 7.14–7.26 (m, 5H). ¹⁹F NMR (CDCl₃) δ –64.3 (d, J = 6.3 Hz). ¹³C NMR (CDCl₃) δ 15.8, 21.4, 26.5, 27.7 (3C), 55.3, 59.5 (q, J = 26.5 Hz), 63.6, 82.7, 126.1 (q, J = 288.9 Hz), 126.4 (2C), 127.2, 128.4 (2C), 146.5, 168.4, 202.6. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C₁₉H₂₇F₃NO₃ 374.1943 found 374.1941.

(3*R*,4*R*)-5,5,5-Trifluoro-3-methyl-4-{[(*R*)-1-phenylethyl]amino}pentan-2-one (**24**). Yellow oil (75 mg, 43%). [α]_D = +72.0 (*c* = 1 g/ 100 mL, CHCl₃). IR 1715 cm⁻¹. ¹H NMR (CDCl₃) δ 1.19 (d, *J* = 7.1 Hz, 3H), 1.26 (d, *J* = 6.4 Hz, 3H), 1.51 (br s, 1H), 2.15 (s, 3H), 2.76– 2.83 (m, 1H), 3.60–3.67 (m, 1H), 3.91 (q, *J* = 6.4 Hz, 1H), 7.20–7.29 (m, 5H). ¹⁹F NMR (CDCl₃) δ –72.35 (d, *J* = 8.9 Hz). ¹³C NMR (CDCl₃) δ 11.1, 23.3, 28.6, 46.4, 55.6, 56.4 (q, *J* = 27.0 Hz), 126.8 (2C), 127.4, 127.7 (q, *J* = 245.8 Hz), 128.5 (2C), 144.7, 208.8. HR-MS (ESI Q-TOF) (*m*/*z*) [M + H]⁺ calcd for C₁₄H₁₉F₃NO 274.1419, found 274.1421.

AlCl₃-Catalyzed Mannich-type Reactions of β -Keto Ester 8 with Aldimine 1c. To a mixture of trifluoromethylaldimine 1c (1 mmol) and β -keto ester 8 (1 mmol) was added AlCl₃ (10 mol %). The reaction was performed under solvent-free conditions and stirred at room temperature for 30 min. After H₂O addition, the crude mixture was extracted with Et₂O. Collected organic layers were dried on anhydrous Na₂SO₄, solvent was evaporated in vacuo, and residues were purified by flash chromatography on silica gel (eluent hexane/ ethyl acetate = 8:2).

Ethyl 2-Acetyl-4,4,4-trifluoro-2-methyl-3-{[(R)-1-phenylethyl]amino}butanoate (anti-18,25/syn-18',25'). Yellow oil (169 mg, 49%). IR 1751, 1715 cm⁻¹. ¹H NMR (CDCl₃) δ 1.12–1.41 (m, 36H), 1.46-1.58 (br s, 4H), 1.81 (s, 3H), 2.04 (s, 3H), 2.22 (s, 3H), 2.32 (s, 3H), 3.89–4.39 (m, 16H), 7.22–7.35 (m, 20H). ¹⁹F NMR (CDCl₃) δ -63.29 (d, J = 7.0 Hz), -63.54 (d, J = 6.7 Hz), -64.99 (d, J = 8.3 Hz), -65.22 (d, J = 6.8 Hz). ¹³C NMR (CDCl₃) δ 13.6, 13.7, 13.8, 13.9, 14.2, 15.2, 16.5 (2C), 21.3 (2C), 21.6 (2C), 24.3, 24.8, 26.1, 26.4, 53.1, 55.3, 55.5, 55.8, 59.0 (q, J = 27.3 Hz), 59.1 (q, J = 26.6 Hz), 60.0 (q, J= 26.6 Hz), 60.8 (q, J = 26.3 Hz), 61.9, 62.0, 62.2 (2C), 62.6 (3C), 63.2, 125.8 (q, J = 280.8 Hz), 125.9 (q, J = 267.5 Hz), 125.9 (q, J = 288.1 Hz), 126.4 (2C), 127.0 (2C), 127.4 (4C), 127.7 (2C), 128.0 (2C), 128.3 (2C), 128.4 (2C), 128.6 (4C), 127.7 (q, J = 245.8 Hz), 142.8, 143.4, 145.2, 145.5, 169.4 (2C), 169.8, 169.9, 201.2, 201.3, 202.4, 202.6. HR-MS (ESI Q-TOF) (m/z) [M + H]⁺ calcd for C17H23F3NO3 346.1630, found 346.1623.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b01379.

Computational details; ¹H, ¹³C, and ¹⁹F NMR data for all new compounds; 2D NMR spectra and optimized geometries for **18–20**, **23**, and **24** (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail stefania.fioravanti@uniroma1.it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Università degli Studi di Roma "La Sapienza" and the Dipartimento di Chimica of the same university for financial support, and we thank Professor Ruggero Caminiti (Dipartimento di Chimica of the same university) for providing free computing time on NARTEN Cluster HPC Facility.

DEDICATION

Dedicated to Professor Paolo Antonio Tardella on the occasion of his 80th birthday.

REFERENCES

(1) (a) Kano, T.; Kobayashi, R.; Maruoka, K. Angew. Chem., Int. Ed. 2015, 54, 8471–8474. (b) Roman, G. Eur. J. Med. Chem. 2015, 89, 743–816. (c) Bernardi, L.; Ricci, A. In Science of Synthesis: Multicomponent Reactions; Müller, T. J. J., Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2014; Vol. 1, pp 123–164. (d) Cai, X.; Xie, B. ARKIVOC 2013, 2013, 264–293. (e) Karimi, B.; Enders, D.; Jafari, E. Synthesis 2013, 45, 2769–2812.

(2) Shibata, N.; Nishimine, T.; Shibata, N.; Tokunaga, E.; Kawada, K.; Kagawa, T.; Aceña, J. L.; Sorochinsky, A. E.; Soloshonok, V. A. *Org. Biomol. Chem.* **2014**, *12*, 1454–1462 and ref. therein.

(3) Funabiki, K.; Nagamori, M.; Goushi, S.; Matsui, M. Chem. Commun. 2004, 1928–1929.

(4) (a) Fioravanti, S.; Parise, L.; Pelagalli, A.; Pellacani, L.; Trulli, L. *RSC Adv.* **2015**, *5*, 29312–29318. (b) Parise, L.; Pelagalli, A.; Trulli, L.; Vergari, M. C.; Fioravanti, S.; Pellacani, L. *Chirality* **2015**, DOI: 10.1002/chir.22478.

(5) (a) Atodiresei, I.; Vila, C.; Rueping, M. ACS Catal. 2015, *S*, 1972–1985. (b) Aher, R. D.; Kumar, B. S.; Sudalai, A. J. Org. Chem. 2015, 80, 2024–2031. (c) Ortín, I.; Dixon, D. J. Angew. Chem. 2014, 126, 3530–3533; Angew. Chem., Int. Ed. 2014, 53, 3462–346. (d) Matsunaga, S.; Shibasaki, M. Chem. Commun. 2014, 50, 1044–1057. (e) Hayashi, Y. Yuki Gosei Kagaku Kyokaishi 2014, 72, 1228–1238. (f) Chen, X. M.; Li, X. S.; Chan, A. S. C. Chin. Chem. Lett. 2009, 20, 407–410. (g) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178–2189. (h) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications; Wiley–VCH: Weinheim, Germany, 2005. (i) Ji, S.; Alkhalil, A. E.; Su, Y.; Xia, X.; Chong, S.; Wang, K.-H.; Huang, D.; Fu, Y.; Hu, Y. Synlett 2015, 26, 1725–1731.

(6) (a) Sreevalli, W.; Ramachandran, G.; Madhuri, W.;
Sathiyanarayanan, K. I. *Mini-Rev. Org. Chem.* 2014, *11*, 97–115.
(b) Zareyee, D.; Alizadeh, H. *RSC Adv.* 2014, *4*, 37941–37946.
(c) Kumar, A.; Gupta, M. K.; Kumar, M. *Green Chem.* 2012, *14*, 290–295.
(d) Gu, Y. *Green Chem.* 2012, *14*, 2091–2128. (e) Raj, M.; Singh, V. K. *Chem. Commun.* 2009, 6687–6703.

(7) Fioravanti, S.; Pellacani, L.; Vergari, M. C. Org. Biomol. Chem. 2012, 10, 8207-8210.

(8) Fioravanti, S.; Pelagalli, A.; Pellacani, L.; Sciubba, F.; Vergari, M. C. *Amino Acids* **2014**, *46*, 1961–1970.

(9) (a) Probst, N.; Madarász, Á.; Valkonen, A.; Pápai, I.; Rissanen, K.; Neuvonen, A.; Pihko, P. M. Angew. Chem. 2012, 124, 8623-8627; Angew. Chem., Int. Ed. 2012, 51, 8495-8499. (b) Yang, C.-F.; Shen, C.; Wang, J.-Y.; Tian, S.-K. Org. Lett. 2012, 14, 3092-3095. (c) Choi, W.

The Journal of Organic Chemistry

B.; Lee, J.; Lynch, J. E.; Volante, R. P.; Reider, P. J.; Reamer, R. A. Chem. Commun. 1998, 1817–1818.

(10) (a) Kashikura, W.; Mori, K.; Akiyama, T. Org. Lett. 2011, 13, 1860–1863. (b) Jia, X-d.; Wang, W-j.; Huo, C-d.; Quan, Z-j.; Ren, Y.; Wang, X-c. Synlett 2010, 2010, 2964–2968. (c) Fujisawa, H.; Takahashi, E.; Mukaiyama, T. Chem. - Eur. J. 2006, 12, 5082–5093. (d) Akiyama, T.; Suzuki, A.; Fuchibe, K. Synlett 2005, 1024–102. (e) Ollevier, T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292–9295. (f) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 2507–2515. (g) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67–77. (h) Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org. Lett. 2002, 4, 143–145.

(11) (a) Li, J.-L.; Liu, L.; Pei, Y.-N.; Zhu, H.-J. Tetrahedron 2014, 70, 9077–9083. (b) Liu, Y.; Wan, J.-P. Org. Biomol. Chem. 2011, 9, 6873–6894. (c) Le Engers, J.; Pagenkopf, B. L. Eur. J. Org. Chem. 2009, 2009, 6109–6111. (d) Shintani, R.; Hayashi, T. In New Frontiers in Asymmetric Catalysis; Mikami, K.; Lautens, M., Eds.; Wiley: New York, 2007; pp 59–100; DOI: 10.1002/9780470098004.ch3. (e) Gonzalez, A. S.; Arrayas, R. G.; Carretero, J. C. Org. Lett. 2006, 8, 2977–2980.

(12) (a) Fioravanti, S.; Pellacani, L.; Vergari, M. C. Org. Biomol. Chem. 2012, 10, 524–528. (b) Morandi, B.; Carreira, E. M. Angew. Chem. 2011, 123, 9251–9254; Angew. Chem., Int. Ed. 2011, 50, 9085–9088.

(13) (a) Zhang, Z.-H.; Li, T.-S. Curr. Org. Chem. 2009, 13, 1–30.
(b) Smitha, G.; Chandrasekhar, S.; Reddy, C. S. Synthesis 2008, 2008, 829–855.

(14) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2011, 133, 8834–8837.

(15) Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. *Chem. - Eur. J.* **2003**, *9*, 2359–2367 and references therein.

(16) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455–529.

(17) Claridge, T. D. W. *High-Resolution NMR Techniques in Organic Chemistry*, 2nd ed.; Tetrahedron Organic Chemistry, Vol. 27; Elsevier: Amsterdam, 2009.

(18) Carroccia, L.; Fioravanti, S.; Pellacani, L.; Tardella, P. A. Synthesis 2010, 2010, 4096–4100.